Binding of aminoglycoside antibiotics to helix 69 of 23S rRNA

نویسندگان

  • Ann E. Scheunemann
  • William D. Graham
  • Franck A. P. Vendeix
  • Paul F. Agris
چکیده

Aminoglycosides antibiotics negate dissociation and recycling of the bacterial ribosome's subunits by binding to Helix 69 (H69) of 23S rRNA. The differential binding of various aminoglycosides to the chemically synthesized terminal domains of the Escherichia coli and human H69 has been characterized using spectroscopy, calorimetry and NMR. The unmodified E. coli H69 hairpin exhibited a significantly higher affinity for neomycin B and tobramycin than for paromomycin (K(d)s = 0.3 +/- 0.1, 0.2 +/- 0.2 and 5.4 +/- 1.1 microM, respectively). The binding of streptomycin was too weak to assess. In contrast to the E. coli H69, the human 28S rRNA H69 had a considerable decrease in affinity for the antibiotics, an important validation of the bacterial target. The three conserved pseudouridine modifications (Psi1911, Psi1915, Psi1917) occurring in the loop of the E. coli H69 affected the dissociation constant, but not the stoichiometry for the binding of paromomycin (K(d) = 2.6 +/- 0.1 microM). G1906 and G1921, observed by NMR spectrometry, figured predominantly in the aminoglycoside binding to H69. The higher affinity of the E. coli H69 for neomycin B and tobramycin, as compared to paromomycin and streptomycin, indicates differences in the efficacy of the aminoglycosides.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bio-Physical Studies of Modified Ribosomal RNAs

Our group is interested in the intersubunit bridge region of the ribosome, which involves interactions between the 16S and 23S rRNAs. The 16S rRNA makes contacts with 23S rRNA through the A site, which is also an important site for tRNA binding and a known target site for aminoglycoside antibiotics. The 23S rRNA contacts 16S rRNA through helix 69 (H69), which also interacts with the Aand the P-...

متن کامل

Mutations in conserved helix 69 of 23S rRNA of Thermus thermophilus that affect capreomycin resistance but not posttranscriptional modifications.

Translocation during the elongation phase of protein synthesis involves the relative movement of the 30S and 50S ribosomal subunits. This movement is the target of tuberactinomycin antibiotics. Here, we describe the isolation and characterization of mutants of Thermus thermophilus selected for resistance to the tuberactinomycin antibiotic capreomycin. Two base substitutions, A1913U and mU1915G,...

متن کامل

Engineering the rRNA decoding site of eukaryotic cytosolic ribosomes in bacteria

Structural and genetic studies on prokaryotic ribosomes have provided important insights into fundamental aspects of protein synthesis and translational control and its interaction with ribosomal drugs. Comparable mechanistic studies in eukaryotes are mainly hampered by the absence of both high-resolution crystal structures and efficient genetic models. To study the interaction of aminoglycosid...

متن کامل

Genetic Reconstruction of Protozoan rRNA Decoding Sites Provides a Rationale for Paromomycin Activity against Leishmania and Trypanosoma

Aminoglycoside antibiotics target the ribosomal decoding A-site and are active against a broad spectrum of bacteria. These compounds bind to a highly conserved stem-loop-stem structure in helix 44 of bacterial 16S rRNA. One particular aminoglycoside, paromomycin, also shows potent antiprotozoal activity and is used for the treatment of parasitic infections, e.g. by Leishmania spp. The precise d...

متن کامل

Evolutionary Origin and Conserved Structural Building Blocks of Riboswitches and Ribosomal RNAs: Riboswitches as Probable Target Sites for Aminoglycosides Interaction.

PURPOSE Riboswitches, as noncoding RNA sequences, control gene expression through direct ligand binding. Sporadic reports on the structural relation of riboswitches with ribosomal RNAs (rRNA), raises an interest in possible similarity between riboswitches and rRNAs evolutionary origins. Since aminoglycoside antibiotics affect microbial cells through binding to functional sites of the bacterial ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2010